- Grundfos
- Solutions
- Learn
- Ecademy
- All courses
- 12 - Applying proportional ...
- Test your knowledge

4 questions Advanced

## ECADEMY test

### 12 - Applying proportional pressure in water boosting systems

This course test contains 4 questions and can be retaken at any time.

You must answer all questions correctly to pass the test and complete the course.

Question 1 of 4 Advanced

Question 2 of 4 Advanced

Question 3 of 4 Advanced

Question 4 of 4 Advanced

Question 4 of 4 Advanced

Happy with your answers?

Submit your current answers and get the final test result.

Submit# Test results

Congratulations. You have passed the test and completed the 12 - Applying proportional pressure in water boosting systems

### Achieved badges:

### How would you rate this course?

You are welcome to add your rating of this course. Remember that you have to be logged in before you take the test to be able to give your rating.

Sorry. You did not pass the 12 - Applying proportional pressure in water boosting systems test this time

### How would you rate this course?

You are welcome to add your rating of this course. Remember that you have to be logged in before you take the test to be able to give your rating.

**Q:**What determines the required head or pressure of the pump?

**A:**Static pressure loss and required pressure loss at the tap

**01:**Static pressure loss and required pressure loss at the tap Your answer

**02:**Static and dynamic pressure losses as well as required pressure at the tap.

**03:**Dynamic pressure loss as well as required pressure at the tap

**Q:**What determines the required head or pressure of the pump?

**A:**Static and dynamic pressure losses as well as required pressure at the tap.

**Q:**What determines the required head or pressure of the pump?

**A:**Dynamic pressure loss as well as required pressure at the tap

**01:**Static pressure loss and required pressure loss at the tap

**02:**Static and dynamic pressure losses as well as required pressure at the tap.

**03:**Dynamic pressure loss as well as required pressure at the tap Your answer

**Q:**What is a key characteristic for static pressure losses?

**A:**They are independent from the flow rate

**Q:**What is a key characteristic for static pressure losses?

**A:**They are closely connected to dynamic pressure losses

**01:**They are independent from the flow rate

**02:**They are closely connected to dynamic pressure losses Your answer

**03:**They are based on the buildings total height

**Q:**What is a key characteristic for static pressure losses?

**A:**They are based on the buildings total height

**01:**They are independent from the flow rate

**02:**They are closely connected to dynamic pressure losses

**03:**They are based on the buildings total height Your answer

**Q:**In the example provided, what is the specific pressure loss of the pipework?

**A:**0,50 kPa per meter of pipe

**01:**0,50 kPa per meter of pipe Your answer

**02:**0,50 m per meter of pipe

**03:**450pa/m

**Q:**In the example provided, what is the specific pressure loss of the pipework?

**A:**0,50 m per meter of pipe

**01:**0,50 kPa per meter of pipe

**02:**0,50 m per meter of pipe Your answer

**03:**450pa/m

**Q:**In the example provided, what is the specific pressure loss of the pipework?

**A:**450pa/m

**Q:**In the example provided, how much energy is saved by operating the water boosting system in proportional pressure control mode?

**A:**More than 15%

**01:**More than 15% Your answer

**02:**More than 25%

**03:**More than 30%

**Q:**In the example provided, how much energy is saved by operating the water boosting system in proportional pressure control mode?

**A:**More than 25%

**01:**More than 15%

**02:**More than 25% Your answer

**03:**More than 30%

**Q:**In the example provided, how much energy is saved by operating the water boosting system in proportional pressure control mode?

**A:**More than 30%